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The life history of human foraging: Cross-cultural 
and individual variation
Jeremy Koster1,2*, Richard McElreath2,3, Kim Hill4, Douglas Yu5,6,7, Glenn Shepard Jr.8, 
Nathalie van Vliet9, Michael Gurven10, Benjamin Trumble4,11, Rebecca Bliege Bird12, Douglas Bird12, 
Brian Codding13, Lauren Coad9,14, Luis Pacheco-Cobos15, Bruce Winterhalder3, Karen Lupo16, 
Dave Schmitt16, Paul Sillitoe17, Margaret Franzen18, Michael Alvard19, Vivek Venkataraman20, 
Thomas Kraft10, Kirk Endicott21, Stephen Beckerman13, Stuart A. Marks22,23, Thomas Headland24, 
Margaretha Pangau-Adam25,26, Anders Siren27, Karen Kramer13, Russell Greaves13, 
Victoria Reyes-García28,29, Maximilien Guèze29, Romain Duda29,30, Álvaro Fernández-Llamazares31, 
Sandrine Gallois32, Lucentezza Napitupulu29, Roy Ellen33, John Ziker34, Martin R. Nielsen35, 
Elspeth Ready2,36, Christopher Healey37, Cody Ross2

Human adaptation depends on the integration of slow life history, complex production skills, and extensive sociality. 
Refining and testing models of the evolution of human life history and cultural learning benefit from increasingly 
accurate measurement of knowledge, skills, and rates of production with age. We pursue this goal by inferring 
hunters’ increases and declines of skill from approximately 23,000 hunting records generated by more than 1800 indi-
viduals at 40 locations. The data reveal an average age of peak productivity between 30 and 35 years of age, 
although high skill is maintained throughout much of adulthood. In addition, there is substantial variation both 
among individuals and sites. Within study sites, variation among individuals depends more on heterogeneity in 
rates of decline than in rates of increase. This analysis sharpens questions about the coevolution of human life 
history and cultural adaptation.

INTRODUCTION
Among hominoids, humans are distinguished by a suite of life his-
tory traits that includes a prolonged juvenile and adolescent period, 
short interbirth intervals, and an extended postreproductive life span 
(1). Multiple conceptual models have been advanced to explain the 
evolution of these traits, focusing on distinctive human behaviors 
such as pair bonding and alloparental care from grandparents and 
others (2–4). Any satisfactory model of human life history evolution 
must simultaneously account for the large brains that characterize 
our species. Foraging complexity and competitive social challenges 
have been alternately championed as the evolutionary prime mover 
of encephalization, while others combine perspectives by citing the 
advantages of flexible cultural learning among juveniles as a solution 
to social and ecological challenges (5).

Progress is made in these debates via models that integrate growth, 
reproduction, cognitive development, skill development, sociality, 
and cultural evolution. The most advanced attempt that we know is 
the optimal control model of González-Forero and Gardner (6). 
Drawing on observed rates of brain and somatic growth, their model 
estimates the relative importance of different ecological and social 
challenges to the evolution of intelligence. In comparison to alter-
natives, the ecological challenge of acquiring food emerges as the 
strongest predictor of the observed pattern of human growth. In this 
model, brains develop first followed by the body because this se-
quence allows a longer period of learning and ultimately higher adult 
productivity. This finding complements recent comparative work 
on the prominence of foraging complexity as a predictor of primate 
brain sizes (7). These findings and predictions direct our attention 
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to age-related variation in foraging skill in human societies. To the 
extent that foraging complexity underlies the evolution of human 
life history traits, we anticipate protracted mastery of foraging tasks 
across the life span.

Here, we focus on age as a predictor of harvests in the largest yet 
assembled database of hunting returns (Fig. 1). We focus on sub-
sistence hunting for multiple reasons. First, because hunting returns 
are evident at the conclusion of an excursion, the modeling of hunt-
ing inputs and outputs generally requires fewer assumptions than 
the analogous analysis of agricultural or pastoralist returns. Second, 
increased hunting is often cited as an adaptive shift that coincides with 
other distinguishing features of the genus Homo (8). However, we 
note that none of the societies in our sample rely exclusively on hunt-
ing (or foraging more generally). Contemporary hunting is not a prim-
itive economy, but rather a recurring one that integrates with other 
means of production. The data should be evaluated accordingly.

RESULTS
There are many ways to summarize the model inferences. We focus 
on three foundational issues that motivated the analysis.

1) What is the overall pattern of skill development?
2) How variable is this pattern within and between societies?
3) Which components of the model—increases early in life or 

declines later in life—describe variation?
At the highest level of pooling, the model provides a statistical 

answer to the question, “What is a typical human life history of for-
aging skill?” This is very much an abstraction, one that attempts to 
factor away all the variation in production functions and associated 
elasticities to reveal an underlying, dimensionless life history. It 
cannot say much about absolute levels of production, either within 
or between societies. However, it can inform comparisons of rela-
tive skill at different stages of life.

The statistically average hunter in this sample peaks at 33 years 
of age (top left plot, Fig. 2). However, this peak is not sharp. At age 

18, this fictional average hunter has 89% of maximum skill. In addi-
tion, skill declines slowly, such that skill falls below 89% of maximum 
only after age 56. The blue shading around the posterior mean in 
this plot shows the entire posterior distribution, fading out to trans-
parent as probability declines. There is correspondingly a lot of in-
formation in this sample about the global mean.

 While the overall pattern is clear, not every site nor individual 
forager exhibits the same pattern. The site-level plots in Fig. 2 illus-
trate this variation. Each site displays the mean skill function for each 
hunter in the sample. While there is substantial uncertainty about 
individual skill curves, there is good evidence of individual-level 
variation at some sites, such as the Matsigenka (9 MTS), the Colombian 
site (11 CLB), the Aché (16 ACH), and the Martu (35 MRT). Differ-
ences among individuals can be quite large. Some individuals have 
half the adult skill of others in the same community.

For each site, the figure also shows the age of peak skill for a sta-
tistically average hunter at that site, as indicated by the vertical dashed 
lines. While these peak ages cluster around 30 years of age, there is 
noteworthy variation. On the low end, the Matsigenka (9 MTS) and 
Wola (40 WOL) peak early, near 24 years of age. Note that the best 
hunters at these sites tend to peak even earlier, a trend that is also 
evident among the Barí (7 BAR). On the higher end, the Aché (16 ACH) 
and Valley Bisa (28 BIS) peak at 37 and 45, respectively, but with 
relatively slow declines.

These skill functions are inputs into site-specific production func-
tions that also include labor and technology inputs that vary in im-
portance across sites. This means that the relationship between 
production and age can be different from the relationship between 
skill and age. In the Supplementary Materials, we therefore present 
alternative versions of the plot that incorporate the other components 
of production (figs. S5 to S7). One feature of the production compo-
nents is that variation can arise from different sources, which, in turn, 
have different implications for age-related variation in harvests at 
the individual level. Furthermore, at some sites (e.g., the Dolgan, 
site 30), the skill functions for individual hunters cluster around a 

Fig. 1. Distribution of study sites. For the key, see Table 1.
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central mean. However, this does not necessarily support inferences 
that hunters at these sites have equal skill because there may be in-
sufficient evidence to distinguish them. For an alternative perspective 
on the anticipated variation among hunters within sites, we simu-
late variation from the posterior samples of the model (fig. S8).

Last, skill functions vary both within sites and between sites. 
Which components of skill contribute to this variation? To address 
this question, we examine the model parameters that measure vari-
ation in the components k (rate of increase) and m (rate of decline) 
of the skill function. Since this is a nonlinear model, we cannot exact-
ly partition total variance. The impact of variation in a component 
of skill depends on the values of all the other components. We can, 
however, consider relative sizes of components of variation on the 
latent scale.

First, we find moderately greater variation in m than k within 
sites (note the cyan curve in the top left plot of Fig. 3). By contrast, 
between-site heterogeneity in age-related skill is divided roughly 
evenly between variation in m and k (see the orange curve in the top 
left plot in Fig. 3). Some caution is necessary in these comparisons 
because the relationship between m and k is not additive. However, 
the implication is that among individuals within a given ecology, 
skill varies more later in life than earlier in life.

We also find a modest positive correlation between k and m (top 
right plot), suggesting that hunters who develop skill relatively 
quickly also show advanced skill later in life. Each cyan density in 
the top right plot is the posterior correlation between hunters’ k and 
m parameters at a given site. This correlation is particularly pro-
nounced for the Aché and modest otherwise. This may reflect the 
lack of longitudinal data on individual hunters at most study sites, 
limiting what can be learned about this correlation. In contrast, the 
Aché site contains enough longitudinal data on individuals to make 
stronger inferences about the correlation.

Last, relative variation in m and k can be decomposed within and 
between sites. We show the posterior distributions of the SDs in 
both k (bottom left) and m (bottom right) in Fig. 3. The cyan densi-
ties are the SDs within sites. This corresponds to the plausible values 
for variation among individuals. The orange densities are the SDs 
among sites, corresponding to the plausible values for variation in 
site-level averages. The dashed curves in both plots show the prior 
distributions, which were the same for both within and between 
components. For both k and m, there is relatively less information 
about variation among sites. As a result, the orange curves remain 
flatter than the cyan curves. There is substantially more informa-
tion about variation within sites, and so the cyan curves are rather 
peaked in both cases. While there is a hint that variation between 
sites contributes more to variation in k, while variation within sites 
contributes more to variation in m, strong inferences cannot be drawn 
until more information is available for inferring the between-site 
variance.

DISCUSSION
Overall, these results provide an empirical counterpoint to compu-
tational models of life history evolution [e.g., (6, 9)]. On the one hand, 
there is agreement among models about the central tendencies for 
the ontogeny of skill, which accelerates most rapidly during child-
hood and adolescence before reaching a plateau during adulthood. 
In all study sites, skill peaks after physical and reproductive maturity. 
This result is largely consistent with predictions of embodied capital 

Table 1. Study sites and their numerical and text codes. See the help 
file of the cchunts package for related citations. 

Number Code Country Group Dataset in cchunts 
package

1 CRE Canada Cree Winterhalder

2 MYA Belize Maya Pacheco

3 MYN Nicaragua Mayangna Koster

4 QUI Ecuador Quichua Siren

5 ECH Colombia Embera Chami Ross

6 WAO Ecuador Waorani Franzen

7 BAR Venezuela Bari Beckerman

8 INU Canada Inuit Ready

9 MTS Peru Matsigenka Yu_et_al

10 PIR Peru Piro Alvard

11 CLB Colombia Van_Vliet_et_al_
South_America_sites

12 PME Venezuela Pume Kramer_Greaves

13 TS1 Bolivia Tsimane Fernandez_
Llamazares

14 TS2 Bolivia Tsimane Reyes-Garcia

15 TS3 Bolivia Tsimane Trumble_Gurven

16 ACH Paraguay Aché Hill_Kintigh

17 GB1 Gabon Coad

18 GB2 Gabon Van_Vliet_et_al_Gabon

19 GB3 Gabon Van_Vliet_et_al_Ovan

20 CN1 DR Congo Van_Vliet_et_al_
Phalanga

21 GB4 Gabon Van_Vliet_et_al_
Djoutou

22 BK1 Cameroon Baka Gallois

23 BK2 Cameroon Baka Duda

24 CN2 Congo Van_Vliet_et_al_Ingolo

25 CN3 Congo Van_Vliet_et_al_
Ngombe

26 BFA Central African 
Republic Bofi and Aka Lupo_Schmitt

27 CN4 DR Congo Van_Vliet_et_al_Baego

28 BIS Zambia Valley Bisa Marks

29 HEH Tanzania Nielsen

30 DLG Russia Dolgan Ziker

31 BTK Malaysia Batek Venkataraman_et_al

32 PN1 Indonesia Punan Gueze

33 PN2 Indonesia Punan Napitupulu

34 AGT Philippines Agta Headland

35 MRT Australia Martu Bird_Bird_Codding

36 NUA Indonesia Nuaulu Ellen

37 NIM Indonesia Nimboran Pangau_Adam

38 NEN Papua New 
Guinea Nen Healey_Nen_PNG

39 MAR Papua New 
Guinea Maring Healey

40 WOL Papua New 
Guinea Wola Sillitoe
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theory (4), although, on average, the empirical data do not reveal 
the distinct peaks in skill during middle age that are evident in previous 
studies of the Aché (10, 11). Instead, the empirical model suggests 
that skill starts to plateau by early adulthood and that only moderate 
increases are evident subsequently. Declines are typically slow, such 
that an 80-year-old may retain two-thirds of maximum skill.

Another noteworthy result is the extent of variability in skill, both 
among and within sites. Cross-cultural variation is evident in the 
rate at which hunters develop peak skill. Within sites, the rate at 
which hunters develop skill is relatively homogeneous compared to 
the variation that distinguishes young hunters in different study sites. 
To explain cross-cultural variation in the development of foraging 
proficiency, it is common and reasonable for anthropologists to 
emphasize ecological predictors, such as extrinsic mortality risks 
[e.g., (12)]. However, varying rates of skill development may stem 
as well from mediating social factors that relate only indirectly to 
ecological differences. Additional theorizing is needed to generate 
hypotheses about the cross-cultural ontogeny of foraging skill in re-

sponse to variables such as experience, motivation, opportunities for 
social learning, and the physical and cognitive demands of hunting 
in different socioecological environments. As opposed to a canalized 
human life history strategy, this study suggests potential develop-
mental plasticity in traits associated with hunting skill, which manifest 
not only in contemporary settings but also potentially in ancestral 
settings. These results further imply that singular study sites can rarely 
be viewed as straightforward analogs for evolutionarily relevant en-
vironments (13).

Within the respective study sites, the model brings new attention 
to the variation in skill among individual hunters. What explains 
this variation? Data and theory suggest that physical strength and 
stamina, accumulated knowledge, and motivation all plausibly con-
tribute to age-related variation (14, 15). In most empirical datasets, 
however, only data on the hunters’ ages are available as predictors, 
not other attributes of the individuals. The peak in the average skill 
function at approximately 33 years old is also near the age when 
physical strength and ecological knowledge plateau (15–18). From a 
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Fig. 2. Skill functions. The figure depicts the global average of skill (top left plot) and skill at the respective study sites. Within study sites, each curve is the posterior mean 
skill for an individual hunter, standardized to the maximum within each site. In the header of each plot, the site number and three-letter code are shown along with the 
number of individual hunters in each sample, followed by the number of observed harvests in parentheses. The orange span of ages corresponds to ages observed within 
each site, while the gray ranges were unobserved and are instead implied by the underlying model. The vertical dashed lines show the average ages at peak within sites.
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theoretical perspective, an optimal life history should develop these 
components together, with the important caveat that brain growth 
may need to precede body growth, to enable learning (9). To distin-
guish the relative importance of phenotypic traits to variation in 
hunting skill across the life span, data are needed that link measure-
ments of these attributes to individual-level hunting returns, ideally 
longitudinally. In the interim, the currently available data suggest that 
individual hunters develop physical and cognitive abilities in con-
cert, resulting in high hunting success by their late 20s and early 30s.

Estimates from empirical studies provide inputs to the parame-
terization of computational life history models. Our analysis of hunting 
by age provides refined estimates of the average skill function, a target 
of inference for recent theoretical work (6, 9). However, the added 
clarity about average skill is belied by the substantial heterogeneity 
that is evident among individual hunters. For future theoretical de-
velopments about the unique human life history pattern, this varia-
tion in skill merits careful attention. Prevailing hypotheses about the 
adaptive shift to hunting by human ancestors assert that reciprocal 
food sharing in small bands was necessary to smooth variance in 
consumption, given that daily harvests by hunters are unpredictable 
(19–21). In this literature, variability in the skill of individual hunters 

has received relatively little consideration (22). Our analysis suggests 
that this variability typifies communities of human foragers while 
concomitantly altering the effectiveness of food sharing for buffer-
ing risk. That is, when hunters vary substantially in their skill and 
productivity, there are asymmetric benefits to participation in risk- 
pooling distribution systems. To the extent that prosociality and other 
traits in the human lineage stem from the cooperative challenges 
posed by this asymmetry, the high variation in hunting skill across 
the life span merits further attention.

MATERIALS AND METHODS
The total sample contains 23,747 observations of 1821 individual 
foragers across 40 study sites (Fig. 1). There is substantial imbalance 
in sample size across units. One site contributes only six trips from 
two individuals. Another contributes more than 14,000 trips from 
147 individuals. Some individuals contribute only a single outcome, 
while others contribute dozens. The majority of the sample comprises 
male hunters, with too little data on female hunters to infer general-
izable sex differences. Most sites contribute primarily cross-sectional 
data, while a few others exhibit impressive time series.
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Fig. 3. Variation in components of skill. (Top left) Relative variation in k and m. The horizontal axis is the ratio of the SD of k to the SD of m. The vertical dashed line at 
1 indicates equality of variances. The orange density is between-site variation. The cyan density is within-site variation. There is more variation in declines (m) than increases 
(k) in skill within sites, whereas the ratio is roughly equivalent across sites. (Top right) Correlation between k and m among individuals within sites. The orange density is 
the global average. Each cyan density represents a single site. The Aché stand out and are labeled separately. (Bottom left and bottom right) Variation in k (left) and m 
(right) comparing variation within and between sites.

D
ow

nloaded from
 https://w

w
w

.science.org at M
useu Paraense E

m
lio G

oeldi on January 20, 2025



Koster et al., Sci. Adv. 2020; 6 : eaax9070     24 June 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 7

Because skill cannot be directly observed, what is required is a model 
with latent age-varying skill, which informs a production function 
for observable foraging returns. The model is described in detail in 
the Supplementary Materials. Building on earlier research (10), our 
modeling framework was developed in a grant proposal and reviewed 
before seeing the assembled sample. Using a Cobb-Douglas produc-
tion function common to economic research, we model hunting returns 
(harvest) on excursions as a standard log-linear function of skill, labor 
inputs, and auxiliary inputs from technology and cooperation

  harvest =  S   η   L   β  α  (1)

where S represents the hunter’s skill with its elasticity, , the labor 
input and its elasticity are represented by L, and  is a linear model 
for covariates such as group size, the number of assistants, the use of 
dogs, and the use of firearms. These latter variables have been shown 
to influence hunting returns (23–26). Note that production requires 
both skill and labor; if either is zero, then there is no harvest. The 
respective elasticities reflect the proportional effects that skill and 
labor have on harvests. That is, increasing either skill or labor results 
in increased harvests, but the scale of the increase is reflected in the 
elasticities. Our parameterization of the function does not impose 
constant returns to scale [cf. (27)].

Data on hunting returns pose the particular challenge of including 
many zeroes (for hunting trips in which nothing was acquired), and 
the harvests on successful hunting trips exhibit positive skew. We there-
fore adapt the Cobb-Douglas function in Eq. 1 to a zero-augmented 
model in which the zeroes and nonzero harvests are modeled via 
separate functions, as detailed in the Supplementary Materials. As 
in previous work (10), we use a Bernoulli distribution to model the 
probability of success versus failure, and the distribution of nonzero 
harvests is assumed to follow a gamma distribution.

To model latent skill across the life span, we adapt the von Bertalanffy 
growth model (28). The benefit of the model is that individuals’ skill 
is assumed to be lowest at birth with eventual declines due to senes-
cence. Within these constraints, the functional form of the model 
potentially exhibits considerable diversity depending on the empirical 
data. Age-related variation in skill is determined by a rate of growth, 
k, and a rate of decline, m. The growth component, k, potentially 
includes ecological knowledge, strength, cognitive function, and other 
traits that underlie foraging success but that exhibit reduced accel-
eration with age. For simplicity, the composite of these attributes can 
be dubbed knowledge. For a hunter of age x, the growth function, K, 
is represented by

   K(x ) = 1 − exp(− kx)   (2)

where k is a parameter greater than zero that reflects the rate of 
increase.

The declining component, m, reflects the senescence of traits re-
lated to hunting skill. For a forager of age x, the decline in produc-
tive ability, M, decreases at a constant rate given by

   M(x ) = exp(− mx)   (3)

where m is a parameter greater than zero that reflects the rate of 
decline.

Age-specific skill is then represented by the weighted product of 
the two preceding functions

   S(x ) = M(x ) K  (x)   b    (4)

where b is represents the elasticity for knowledge in the skill function. 
As detailed in the Supplementary Materials, the von Bertalanffy 
model permits diverse functional forms of skill across the life span, 
ranging from approximately sigmoidal to roughly quadratic shapes. 
Although we assume that the growth and senescence components 
of skill relate to proximate mechanisms, such as age-related varia-
tion in ecological knowledge and physical abilities, the available data 
do not allow us to examine those proximate mechanisms [cf. (15, 18)]. 
As a result, age-related variation in skill must be inferred from its 
effects on the observed productivity of hunters of heterogeneous ages.

The statistical model allows the von Bertalanffy parameters to vary 
across individuals, reflecting different rates of increasing skill or se-
nescence among hunters. The parameters also vary across study 
sites, allowing for different rates of increase and decline in heteroge-
neous environments. As noted previously, we model hunting returns 
using a zero-augmented gamma model, and the respective skill func-
tions of hunters and societies are estimated jointly from the Bernoulli 
and gamma functions. It would have been possible to estimate sep-
arate, correlated individual-level and site-level skill functions for the 
Bernoulli and gamma functions, respectively. Our modeling approach 
instead assumes that increases in skill have comparable effects in 
terms of reducing the probability of unsuccessful excursions and 
increases in the amount of meat acquired on successful outings. This 
assumption receives support from an earlier analysis of the Aché 
dataset, which suggests that there is a positive correlation (and no 
evident tradeoff) between hunters’ probabilities of acquiring some-
thing and the amounts that are harvested on successful trips (10).

In addition to the varying effects on the skill parameters, the model 
also allows the parameters for labor inputs and covariates in the 
linear model to vary across study sites. Missing data, particularly for 
hunt duration and technological variables, are common and addressed 
using Bayesian imputation and averaging methods.

At some study sites, hunters work cooperatively to harvest prey, 
and the data on these excursions assign the hunting returns to the 
group, not individual hunters. In those cases, we replace individual 
hunter skill in the production equation with the weighted average of 
the skill of the group members. The statistical model follows the 
principles of a multiple membership model (29, 30). When hunters 
are observed in different combinations of groups, it is possible to 
distinguish differences in skill between them.

We cannot rule out selection biases that complicate inferences. 
For instance, if there were a study site where highly skilled hunters 
are active regardless of environmental conditions and the relatively 
unskilled hunters are active only when returns are expected to be 
particularly favorable, then the estimated variation in hunters’ skill 
would likely be lower than a site where hunting activity occurs inde-
pendently of skill.

We fit our model using a Hamiltonian Monte Carlo sampling 
algorithm in the Rstan package, version 2.16.1 (31). We implemented 
the model both as a forward simulation and as a statistical model. 
The forward simulation validates that the statistical model can re-
cover parameters from data with known values. The statistical model, 
estimated from 10 chains of 500 iterations, exhibits efficient mixing 
and adequate diagnostics. The data and convenience functions are 
included as part of the cchunts R package, which is available along-
side the model posterior, coding scripts, and accompanying infor-
mation about the Open Science Framework (https://osf.io/2kzb6/).
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/26/eaax9070/DC1
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